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SOME NONASYMPTOTIC EFFECTS ON THE
SONIC BOOM OF LARGE AIRPLANES

By F. Edward McLean
Langley Research Center

s 24450

The study of a number of equivalent bodies representing a large alrplane
at critical transonic flight conditions indicates the possible inapplicability
of the asymptotic far-field theory used in current \sonic-boom analysé%x At
these normal operating conditions the pressure field from a large airplane,
such as the supersonic transport, tends to exhibit important nonasymptotic near-
field characteristics which must be calculated with the use of general theory.
Since the shape and magnitude of the near-field pressure signature is dependent
on airplane equivalent body shape, suppression of the sonic boom through =
design approach to a more idealized near-field shape 1s suggested. The results
of the study indicate that if certain effective area distributions can be
achieved by real airplanes, sonic-boom overpressures much lower than those pre-

dicted by current asymptotic methods would be possible. ,ZZZ;%:;%;)

INTRODUCTION

Sonic boom has become a major problem in the current national program for
the development of a (commercial supersonic transport. Extensive supersonic
overflight of populated areas is envisioned for the transport airplanes; con-
sequently, the associated property damage and annoyance to the population caused
by the sonic boom could lead to severe restrictions in airplane design and oper-
ation. The effect of these restrictions on the flight characteristics of the
airplane, particularly at critical transonic acceleration conditions, might well
be the pivotal issue which decides the economic feasibility of the supersonic
transport.

The serious nature of the sonic-boom implications in supersonic airplane
development has led to considerable research effort to develop analytic methods
which accurately describe the relationship between the airplane and its sonic-
boom characteristics. In the sonic-boom analysis methods which have evolved
from this research, some results of which are summarized in reference 1, the
airplane at various lifting conditions has been conveniently represented by
equivalent bodies of revolution. The sonic-boom characteristics of these equiv-
alent bodies of revolution have then been determined by use of the asymptotic
far-field shock relationships derived by Whitham (ref. 2).
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The asymptotic far-field relationship, which is a special solution of mbre
general shock equations derived by Whitham, is a theoretical representation of
the pressure disturbances generated by a body of revolution at some location
far from the body. Sonic-boom data obtained during the overflights of current
supersonic airplanes at normal operating altitudes have correlated reasonably
well with these theoretically derived far-field solutions (ref. 1). However,
in sonic-boom wind-tunnel experiments it has been difficult to simulate far-
field conditions. Even with extremely small models, the N-wave pressure signa-
ture which characterizes the far field is generally not fully developed in the
distances permitted from the model to the floor of the wind tunnel (ref. 1).

In an attempt to overcome this difficulty, consideration was given to the
applicability of the general shock relationships of reference 2 in the obvious
near-field confines of the wind tunnel. The premise was that if general theory
could predict the pressures near an airplane model or its representative equiv-
alent body then these pressures could be extrapolated to the proper far-field
condition with confidence. If the feasibility of this extrapolation could be
shown, it would be possible to use larger wind-tunnel models with a better rep-
resentation of the design features of the airplane.

During the early phasés of this investigation, an interesting and perhaps
more important pessibility was indicated by the analysis. This possibility was
that, at some critical flight conditions, the pressure field of a large air-
plane, such as the supersonic transport, would reach a far-field variation only
at distances well beyond normal operational altitudes. Under these nonasymp-
totic conditions the general or near-field solution of the theory indicates
lower levels of sonic-boom overpressures than are indicated by the currently
accepted far-field solution. Furthermore, since the shape of the pressure slg-
nature under nonasymptotic conditions is still influenced by the shape of the
airplane equivalent body, the possibility of further sonic-boom suppression
through airplane design modifications was suggested. The purpose of the present
investigation is to explore some of these nonasymptotic solutions of the sonic-
boom theory for large airplanes.

The general theory of reference 2 is applied herein to determine the bow-
shock pressure-rise characteristics of several analytic bodies of revolution.
Particular emphasis is given to the effect of body shape on the distance from
the body at which far-field conditions are effectively attained and on the
manner in which the bow-shock pressure rise approaches the asymptotic variation.
Test models of several equivalent bodies were designed to represent the combined
1ift and base-area requirements of a typical 450 000-pound supersonic transport
at critical transonic flight conditions (Mach number 1.414). Pressure signa-
tures measured at a Mach number of 1.414 in the near field of the test models
are compared with pressure signatures calculated by the general theory of ref-
erence 2. The degree to which these theoretical and experimental nonasymptotic
near-field pressures approximate the asymptotic values is indicated. Finally
the nonasymptotic sonic-boom ground overpressures which would be anticipated
from several representative transport equivalent bodies are compared with corre-
sponding asymptotic overpressures and with the asymptotic lower bound of sonic-
boom overpressures discussed in references 1 and 3.
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SYMBOLS

cross-sectional area of airplane or model
nondimensionalized cross-sectional area, A/Z2

cross-sectional area at base of airplane or model

nondimensionalized effective cross-sectional area due to combination
of volume and 1lift effects, A(t) + B(t)

nondimensionalized effective cross-sectional area at base of airplane
or model due to combination of base area and 1ift effects,

A
_B_CLE.+_E.

2 12 12
B X
equivalent cross-sectional area due to lift, oo L/p Fr, dg
e VYo

nondimensionalized equivalent cross-sectional area due to 1lift, B/Z2

lift coefficient

lifting force per unit length along longitudinal axis of airplane
or model

. 1 [T Ae dt
effective area distribution function, =— —_—

% Jo Vit

airplane flight altitude or perpendicular distance from model to
measuring probe

.
effective area distribution integral, k/p F(n)dn
0]

reflection factor

airplane or model reference length
Mach number

reference pressure for a uniform atmosphere (free-stream static
pressure for wind-tunnel tests)



Pa atmospheric pressure at airplane altitude !

Pg atmospheric pressure at ground level

Ap incremental pressure due to flow field of airplane or model

q dynamic pressure

S wing planform area

t nondimensionalized distance, x/1

W alrplane weight

X distance measured along longitudinal axis from airplane nose or
model nose

X longitudinal distance from airplane nose or model nose to point on
corrected characteristic

AX distance from point in undisturbed flow ahead of shock to point on
pressure signature

B =yM -1

Y ratio of specific heats (1.4 for air)

n dummy variable of integration corresponding to T

3 dummy variable of integration corresponding to t

T nondimensionalized linear theory characteristic variable, E—:—EE

To value of T glving largest positive value of I(T)

A prime is used to indicate a first derivative and a double prime is used
to indicate a second derivative with respect to indicated argument of the
function.

THEORETTICAL CONSIDERATIONS

The theoretical studies of reference 2 have provided a means for esti-
mating the pressures at any point in the supersonic flow field about an axi-
symmetric body of revolution. In the adaptations of this method for considera-
tion of the complex flow patterns about an asymmetric airplane configuration at
lifting conditions, the volume and 1ift distributions have been combined to
form a representative equivalent body of revolution (refs. 1 and 4). The effec-
tive area distribution of the assumed equivalent body of revolution is given by

L




Ae = A(t) + B(t) (1)

The term A(t) in equation (1) represents a distribution along the longitudinal
axis of a nondimensionalized airplane cross-sectional area and is generally
obtained from supersonic area-rule concepts. The term B(t) represents a dis-
tribution of nondimensionalized equivalent area due to 1ift evaluated through
an integration of the lifting force per unit length along the airplane longitud-

inal axis. The effective nondimensionalized base area Ag p can be expressed
as

;S A A
e + b _ _BW_ + -b (2)
012 12 2q12 12

Aep =

The first term of Ae,b depends on the weight and operating condition of the
airplane; since the physical area of an efficient airplane generally approaches
zero at the base, the term Ay, depends primarily on the jet exit area of the
airplane engines.

A function P(T), related to the body area distribution, is essential in
the method of reference 2. If the area distribution due to volume used in the
derivations of reference 2 can be replaced by an effective area due to volume
and lift, the function F(7) can be expressed as

1 T Ay dt
F(T) —
ex Jo ot

F(r) = = U/“T Ghe
2 Jo yT-E

(3)

where the latter expression is a Stieltjes integral which can be used for dis-
contlnuous slopes 1f the Lighthill correction (ref. 2) is applied near the
point of discontinuity. However, a sharp discontinuity in the forward area
development is undesirable from drag considerations, and the boundary layer
tends to falr over minor discontinuities. For efficient supersonic alrplanes

the major effect of discontinuities is expected to be restricted to the wake-
induced pressure field.

Once the function F(r) is determined from equations (3), a description
of the entire flow field about a body of revolution is possible with the method
of reference 2. TFor convenience two zones of influence may be considered: in
the near field of the body of revolution, body shape (or the shape of F(T))
has an influence on the shape of the pressure signature, and, in the asymptotic
far fileld, body shape no longer has an influence on the shape of the pressure
signature or on the rate of decrease of the shock strength with distance.
Although reference 2 contains a complete description of the theory, the
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relationships pertinent to the present analysis are included herein in the N

notation of the present paper.

General Theory Expressions for Pressure Signature

For any effective area distribution Ag which generates an F(r) function
with one region of compression F'(r1) > O in the positive range of F(1) and
one region of compression in the negative range of F(1), the flow field will
be characterized by two shocks. Such an F(t) function is shown in figure 1(a).
If it is desired to locate the shocks at some radial distance h/1 from the
body which generated the 1llustrated F(T) function, Ty Tor Tz, and T),

must be determined such that

1/2 T2 - Tl T)_"_ - T5 ()+)

3) - () F(w) - F(3)

Also, the following conditions must be met at the bow shock:

1) ~3e - )] g

and at the tail shock:

I(ry) - I(7s) ;—‘(Tu - 73)[31(%) + F(TB)] (6)

The solutions of equations (4) and (5) for the bow shock and (4) and (6)

1
for the tail shock are equivalent to passing lines of slope through
g F k(h/l)l;z

the curve for F(t) as illustrated in figure 1(a) such that Area I = Area II
and Area III = Area IV.

With Tys Tos T3y and T, defined, the pressure signature at the
desired h/l is given by

N
(éﬁ) _ KryMeF(T) < <
T e S S IS
Ty STS®

1

£-pn_ __ kF(T)(Il_l)l/z

where defines the bow shock and 75 and T, define the tail shock. The

T
2
term K, in equation (7) is a reflection factor used in current sonic-boom
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(b) Pressure signature,

Figure 1.- Representative effective area distribution function and general theory pressure signature.

analyses which has a value of unity until the pressure wave comes in contact
with a reflective surface. A representative pressure signature cbtained from
a solution of the general theory equations is illustrated in figure 1(b).

If only the bow shock characteristics are of interest, the solution can be
written such that the strength, or pressure jump at the bow shock, 1s given by

1/2
) (8)

(Ap) r.orset [T
bow shock B

’ e
L Joow shock

where
2
(?-) . ———,;)*[I(T)] (9)
YJoow shock k2 [F(T)]
and

I(T) = /;T F(n)dn (10)

The bow shock is located at a longitudinal position given by
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s 1/2

X - Bho_ o kF('r)(ll—l)b (11)

1 ow shock

As T 1is increased in the positive region of F(t), the bow-shock charac-
teristics are described at greater and greater distances from the generating
body. (See eas. (8) to (10).) If one follows this general solution from the
vicinity of the generating body outwards, the influence of the shape of F(T)

and (E

> diminishes. Finally a
l bow shock

and hence Ag on (%?)
bow shock
radial distance given by

2
(E) - flell (12)
U Jbow shock kQEF(TO):I)*
is reached at which the body shape no longer has an Influence on the shape of
the pressure signature. At this so-called far-field location a typical N-wave

pressure develops and the general solution is replaced by an approximate asymp-
totic expression. If F(T) -0 as 7 - Tos the bow shock would reach far-field

conditions only at an infinite radial distance from the body. (See eq. (12).)
If F(7) is finite but discontinuous at T = To the radial distance from the

body required for asymptotic pressure variation can be determined from equa-
tion (12) with the use of the largest positive value of F(TO).

Asymptotic Expression for Bow-Shock Pressure Rise
and Pressure Signature

The asymptotic expression for the bow-shock pressure rise in the far field
may be determined by the use of equation (8) as

(2 | 2ot i
P )bow shock (E)B/11L
1

and the asymptotic bow shock is located at a longitudinal position given by

- () @) e

In equation (13), (éQ)
P /bow shock

(13)

is dependent on the body shape or the




lotigitudinal variation of Ag only as a constant I(To) which is related

-3/h
to Ag. Also, the shock strength varies as (%) irrespective of the shape

of Ag.

In the far field,

SIS
P tail shock P /bow shock

and the tail shock is located at a longitudinal position given by

_ 1/2
Bt (B} () =

The pressure varies linearly between the values at the bow and tail shocks.
RESULTS AND DISCUSSION

Equations (8), (9), and (12), which are based on the general theory of
reference 2, indicate that body shape, through its influence on F(7), has an
effect on the distance from the body at which asymptotic pressure conditions
are essentially attained. For certain types of area distribution the theoret-
ical distance from the body to the far field can be uniquely determined from
equation (12). The general theory equations indicate a further influence of
body shape on the manner in which the bow-shock pressure-rise characteristics
approach an asymptotic far-field variation. A number of analytic equivalent
bodies of revolution are used herein to consider the possible importance of
these effects which have not been considered in sonic-boom analyses of super-
sonic airplanes at normal operating conditions.

Effect of A, on Approach to Asymptotic Far-Field
Conditions for Pointed Bodies
With the use of general theory equations (8) and (9), the bow-shock

(2 il

P )bow shock(l

pl/ M,

(viz, Aé(o) = O) represented in figure 2 have been determined at a Mach number

Pressure-rise parameter for the series of pointed bodies

of 1.414. The calculated general theory pressure-rise parameter divided by
JAe,b for these bodies is shown in figure 3 plotted against a distance
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Figure 3.- Variation of bow-shock pressure-rise parameter with distance parameter for pointed bodies. M = 1414,
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parameter Ag,b(%)' Also shown are the asymptotic far-field pressure-rise

parameters for each of the three shapes. The asymptotic values are invariant
with distance parameter.

From figure 5, the shape of the effective area distribution A, has a
marked influence on the manner in which the bow-shock pressure-rise parameters
approach their respective asymptotes. Since the effective area shape shown in
figure 2(a) has an F(7) distribution which approaches zeroc as T approaches
Ty the far-field solution is a true asymptote. For the effective area shapes

shown in figures 2(b) and 2(c), which have discontinuous non-zero values of
F(1) at Ty, the theoretical distance to the far field can be determined from

equation (12) for a specified Ae,b and body length. The bow~-shock pressure

rise for the shape shown in figure 2(c) does not represent the maximum over-
pressure which would be present in the signature because F(1) for the shape
shown in figure 2(c) increases as T increases. For convenience, the shapes
shown in figures 2 and 4 are identified hereinafter by figure number.

The fact that h/l and Ae,p are factors of the abscissa in figure 3
indicates the possible inapplicability of the currently used asymptotic solu-
tions in the sonic-boom analysis of a long slender airplane such as the super-
sonic transport. The curves of figure 3 further suggest that sonic-boom advan-
tages may accrue if the effective area distribution of an airplane is such that
nonasymptotic near-field pressure-rise characteristics are provided at normal
operating conditions.

Effect of A, on Approach to Asymptotic Far-Field
Conditions for Blunt Bodies

General theory calculations similar to those for the pointed bodies of
figure 2 have been made for the series of blunt bodies (Viz, As(0) > O) rep-
resented in figure 4. Although these blunt effective area shapes would prob-
ably be impractical from drag considerations, they are of interest since the
lower bound asymptote of sonic-boom overpressures is obtained from one of these
shapes (shape 4(a)). This lower bound shape, which was derived in reference 3,
is not amenable to exact solution because of the extreme nose bluntness. How-
ever, a limiting solution can be obtained which indicates that the positive
F(7) pulse is located at the nose with zero values over the remainder of the
body length (ref. 3). An integration of the limiting solution yields the lower

bound asymptotic bow-shock pressure-rise parameter of O.SMJAe’b. Since F(T)
is infinite at T = 75, equation (12) would indicate that the bow-shock
bressure-rise characteristics for this lower bound shape would essentially
reach asymptotic conditions at the body.

The variation with distance of the bow-shock pressure-rise parameter
divided by «Ae,b of the blunt bodies of figure 4 is shown in figure 5. As

11
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12




mikht be expected, shapes 4(b) and 4(c) have higher asymptotic pressure-rise
levels than does the lower bound shape hga). However, at distances before the
far-field condition is reached, shapes 4(b) and 4(c) have substantially lower
bow-shock pressures than would be predicted from lower-bound considerations.
As for the pointed bodies, figure 5 indicates that the shape of Ae has a
marked influence on the manner in which the bow-shock pressure-rise approaches
an asymptotic far-field variation.

Dimensional Consideration of Possible Nonasymptotic Effects

The results of figures 3 and 5 suggest that for critical transonic accel-
eration conditions, a long slender airplane such as the supersonic transport
might generate a nonasymptotic near-field pressure signature at the ground. If
this is so then the far-field expression (eq. (13)) normally used in sonic-boom
estimates could overpredict the sonic-boom ground overpressures for this crit-
ical condition. 1In order to pursue this possibility, representative dimensions
must be applied to the curves of figures 3 and 5. A typical large supersonic
transport configuration with 1 = 230 feet and W = 450 000 pounds in tran-
sonic flight (M = 1.414) at an altitude of 44,000 feet would have an effective
nondimensionalized base area Ae,p ©of 0.0l corresponding to a body with a

ratio of length to base diameter of 8.86.

With these representative values of Ae,b and 1, some of the curves of
figures 3 and 5 have been redrawn for the assumed operating condition. The

(é%§bow shock(%)a/4
8L/,

assumed size and flight conditions, is shown as a function of h in figure 6.

bow-shock pressure-rise parameter , corresponding to the
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Figure 6.- Variation of bow-shock pressure-rise parameter with h for typical supersonic transport dimensions and operating condition.
M = 1414 Ae b 0.01; L= 20 ft; W = 450 000 ib,
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The figure indicates that airplanes which simulate effective area shapes 2(a),
2(c), and 4(0) would indeed be expected to produce a nonasymptotic pressure
field at the assumed normal operating altitude of 44 000 feet. In fact, for
the assumed conditions, the far-field asymptotic variation of bow-shock
pressure-rise parameter for these three shapes would not occur until from

220 000 to several million feet from the body. In contrast, note the bow-shock
pressures for the tunnel simulated altitude of L600 teet which are indicated in
figure 6. This altitude is near the maximum level which can be simulated in
present facilities with a 2-inch model of a transport configuration.

Experimental Investigation of General Theory

The possible sonic-boom advantages indicated by the general theory results
of figure 6 have led to an experimental investigation to check the validity of
the theory. Pressure measurements were made at a Mach number of 1.41% in the
flow field of bodies of revolution representing the shapes and supersonic
transport flight condition indicated in figure 6. The pressure data were
obtained at a ratio of radial distance to body length of 20 which corresponds
to a simulated altitude of 4600 feet for the assumed airplane length of
230 feet. The measured pressure signatures are compared in figure 7 with those
obtalned from a rigorous application of the theoretical methods of reference 2.
From this figure it can be seen that the general theory provides an extremely
good representation of the field pressures for all body shapes considered.
Although the asymptotic solution is not applicable for this obvious near-fileld
condition, note that the area under the positive pressure region of the general
theory and asymptotic signatures are essentially the same. Since this area is
related to the positive impulse which would be produced at an observation point
by the pressure wave it is an important property damage consideration. On this
basis, the lower bound asymptotic shape (shape 4(a)) would produce the lowest
positive impulse for a given operating condition.

Calculated Ground Overpressures From Flight
at Normal Operating Altitude

From the comparisons in figure 7T, the general theory of reference 2 appears
to be valid at the simulated near-field wind-tunnel altitude of L4600 feet. It
would be anticipated that the general theory is also applicable for the non-
asymptotic conditions indicated in figure 6 at the normal operating altitude of
L4 000 feet. Furthermore, the asymptotic solution, which is inapplicable at
the simulated tunnel altitude of 4600 feet, would be expected to provide a poor
approximation of the sonic-boom ground overpressures for the nonasymptotic sit-
uation represented by the assumed flight condition.

The theoretical development of reference 2 i1s based on a uniform atmos-
phere. In order to determine the sonic-boom ground overpressures from equa-
tions (7), (8), and (13), it is first necessary to define a reference pressure
which accounts for the variation of atmospheric pressure and temperature between
the airplane and the ground. The reference pressure which is the current basis

14
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for.most sonic-boom estimates is Jpapg, the geometric mean of the pressure at

flight altitude and the pressure on the ground. With the use of this geometric
mean reference pressure and an established reflection factor, K, = 1.9, the

nonasymptotic near-field ground overpressures expected from the body shapes and
flight condition of figure 6 may be determined. Representative pressure sig-
natures of this type, for shapes 2(a) and 2(b), are presented in figure 8 and
compared with those which would be obtained from asymptotic theory and from the
asymptotic lower bound shape (shape 4(a)).

Anticipated near field signoture

——————— Asymptotic solution
—— —— Lower bound asymptote (shope 4(0))

Shape 2 (a)

Ag,b=.0!
Ground
overpressure,
Ap, b /sqft
2r ~o .
| \I\\
| ~.
Ground ) ' S ..
overpressure, i+ : ~ o
Ap, Ib /sq ft ; I
1
O L_ L ] : 1 l 1 1 1 1 )
0 40 80 120 160 200 240 280
AX, ft

Figure 8- Comparison of caiculated near-field ground overpressures with asymptotic predictions. M = L414; h = 44 000 ft;
W =4500001b; 1= 230ft

The calculated results presented in figure 8 indicate distinct alleviation
of the sonic boom for effective equivalent body shapes that produce nonasymp-
totic ground pressure characteristics at normal operating altitudes. The near-
field sonic-boom overpressures produced by these shapes are considerably lower
than would be expected from asymptotic considerations and indeed are somewhat
lower than the lower bound of asymptotic overpressures.

The question as to whether the idealized effective area distributions used
herein can be duplicated in a practical airplane configuration can not be
answered at this time. However, the present results indicate that, for certain
normal operating conditions, a large alrplane such as the supersonic transport
has the dimensions which tend to place it in a flight region where the cur-
rently used asymptotic sonic-boom theory does not apply. The nonasymptotic
effects which have been considered suggest that sonic-boom suppression through
a design approach to an alrplane equivalent body shape which generates near-
field pressure characteristics at great distances is a possible solution to the
critical sonic-boom problem at transonic acceleration conditions.
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CONCLUDING REMARKS ¢

The study of a number of equivalent bodies representing a large airplane
at critical transonic flight conditions indicates the possible inapplicability
of the asymptotic far-field theory used in current sonic-boom analyses. At
these normal operating conditions the pressure field of a large airplane, such
as the supersonic transport, tends to exhibit important nonasymptotic near-field
effects which must be considered with the use of general theory. Since the
shape and magnitude of the near-field pressure signature is dependent on ajir-
plane equivalent body shape, sonic-boom suppression through a design approach
to a more idealized near-field shape is suggested. The results indicate that
if certain effective area distributions can be achieved by real airplanes,
sonic-boom overpressures much lower than those predicted by current asymptotic
methods would be possible at critical transonic acceleration conditions.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 7, 1965.
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